Answers to additional health questions

Chapter 15 Factor Analysis

Use the procedures shown in Chapter 15 to explore the structure underlying the set of questions designed to assess the impact of sleep problems on various aspects of people's lives. These items are labelled *impact*1 to *impact*7. They were originally designed to tap one overall dimension – is this supported by the results of factor analysis?

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	.856	
Bartlett's Test of Sphericity	Approx. Chi-Square	600.393
	df	21
	Sig.	.000

Communalities

	Initial	Extraction
mood	1.000	.687
energy level	1.000	.567
concent	1.000	.642
memory	1.000	.512
life sat	1.000	.725
oveall well-being	1.000	.806
relationships	1.000	.670

Extraction Method: Principal Component Analysis.

Total Variance Explained

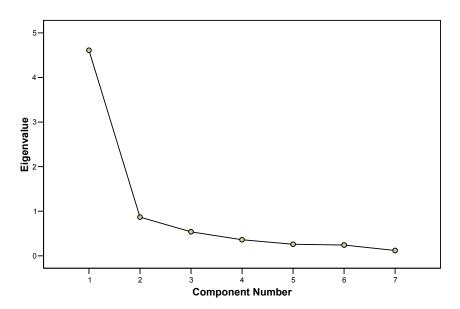
	Initial Eigenvalues			Extraction	Sums of Squared	d Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.610	65.854	65.854	4.610	65.854	65.854
2	.869	12.409	78.262			
3	.539	7.701	85.963			
4	.361	5.152	91.115			
5	.260	3.715	94.830			
6	.242	3.462	98.292			
7	.120	1.708	100.000			

Extraction Method: Principal Component Analysis.

Component Matrix ^a

	Component	
	1	
oveall well-being	.898	
life sat	.852	
mood	.829	
relationships	.819	
concent	.801	
energy level	.753	
memory	.716	

Extraction Method: Principal Component Analysis.


a. 1 components extracted.

Rotated Component Matrix ^a

Dummy category	
, , ,	

Only one component was extracted.
The solution cannot be rotated.

Scree Plot

Results of parallel analysis for impact of sleep problem (Sleep.sav)

+++++++++++++++++++++++++++++++++++++++				
Eigenvalue #	Random Eigenvalue	Standard Dev		
+++++++++++++	+++++++++++++++++++	++++++++++++++++		
1	1.3503	.0780		
2	1.2082	.0539		
3	1.0815	.0425		
4	0.9896	.0404		
5	0.8922	.0334		
6	0.7936	.0526		
7	0.6846	.0582		
++++++++++++	+++++++++++++++++++	+++++++++++++++		
4/04/2004 3:5	7.41 PM			

Monte Carlo PCA for Parallel Analysis ©2000 by Marley W. Watkins. All rights reserved.

Output from sleep.sav

Total Variance Explained

	Initial Eigenvalues			Extraction Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.610	65.854	65.854	4.610	65.854	65.854
2	.869	12.409	78.262			
3	.539	7.701	85.963			
4	.361	5.152	91.115			
5	.260	3.715	94.830			
6	.242	3.462	98.292			
7	.120	1.708	100.000			

Extraction Method: Principal Component Analysis.

There are a number of indications that support a one factor solution:

- In the Total Variance Explained table only one factor recorded an eigenvalue above 1
- The screeplot showed a change in the slope of the line between the first and second factors
- Parallel analysis showed that only the first eigenvalue (4.61) was larger than the corresponding value generated from a random data set
- Inspection of the Component Matrix table shows that all items load strongly on the one underlying component (all above .716)